@Joseinnewworld just went off again tonight — picked up 7 more #NFTs like it’s a nightly ritual 🔥 At this point, he’s not collecting... he’s curating. Big love and respect, always 🙌 #NFTcollector #UnstoppableSupport #NFTMarketplace #NFTCollection #CryptoMarket #eCash $XEC pic.twitter.com/KW1CCb1Pj0
— NFToa (@nftoa_) July 10, 2025
Network Analysis, in this case is a work network, usually used for infrastructure development projects such as flyovers, buildings, roads, etc. Such as the best algorithm to start work, so that the steps taken are more optimal.

Example of Network Analysis Solution Using ES EF LS LF Algorithm Method
Exercise 1
ASM Company will build an office with the following table activity schedule.
| Kegiatan | Keterangan | Kegiatan Yang Mengikuti | Waktu (minggu) |
|----------|--------------------------|-------------------------|----------------|
| a | Merancang | b | 5 |
| b | Pesan Bahan | c, d | 8 |
| c | Meratakan Tanah | f | 2 |
| d | Membuat Pondasi | e | 3 |
| e | Membuat Tembok | h | 4 |
| f | Membuat Atap | g | 3 |
| g | Membuat Lantai | i | 5 |
| h | Memasang Pintu & Jendela | i | 3 |
| i | Finishing | - | 5 |From the table above, please create a network diagram, then determine the shortest time and critical path to be able to immediately execute the planning above. Use the ES EF LS LF algorithm method.
Completion
Network Analysis Network Image Exercise 1

ES EF LS LF Algorithm Method Image - Exercise 1
Critical Path Requirements:
- ES = LS , or
- EF = LF , or
- Slack = 0.
Slack is the interval between ES-LS and EF-LS. So a slack is said to be 0, if the conditions are ES-LS and EF-LS = 0. (cannot be just one of them, so it must be both).
Conclusion
Then two alternative critical paths/fastest paths can be obtained, namely a, b, c, f, g, i or a, b, d, e, h, i, of which in the process only one can be chosen.
1 → 2 → 3 → 4 → 6 → 8 → 9 with a working period of 28 weeks
or
1 → 2 → 3 → 5 → 7 → 8 → 9 with a completion time of 28 weeks.
Exercise 2
GATEWAN Company will build an office with the following table activity schedule.
| Kegiatan | Keterangan | Kegiatan Yang Mendahului | Waktu (minggu) |
|----------|-----------------------------------|--------------------------|----------------|
| a | Merancang | - | 2 |
| b | Membuat pondasi | a | 3 |
| c | Pengadaan Bahan | a | 18 |
| d | Membuat tembok | b | 8 |
| e | Memasang rangka pintu dan jendela | d | 6 |
| f | Membuat atap | b | 5 |
| g | Memasang keramik | d | 7 |
| h | Memasang pintu dan jendela | f | 1 |
| i | Mengecat | e,h | 2 |
| j | Finishing | c,g,i | 2 |From the table above, please create a network diagram, then determine the shortest time and critical path to be able to immediately execute the planning above. Use the ES EF LS LF algorithm method.
Completion

Network Analysis Network Image Exercise 2

ES EF LS LF Algorithm Method Image - Exercise 2
Conclusion
Then we can obtain two alternative critical paths / fastest paths, namely a, b, d, e, i, j.
1 → 2 → 3 → 4 → 6 → 7 → 8 with a completion time of 23 weeks
UAS ES EF LS LF & Matrix Method
ASM Bakery Company will build a new office with the following activity schedule:
| Kegiatan | Keterangan | Kegiatan Yang Mengikuti | Waktu (minggu) |
|----------|-----------------------------------|-------------------------|----------------|
| a | Merancang | - | 2 |
| b | Pengadaan Bahan | - | 5 |
| c | Membuat Pondasi | - | 3 |
| d | Membuat Tembok | a | 4 |
| e | Memasang Rangka Pintu dan Jendela | a | 2 |
| f | Membuat Atap | c | 3 |
| g | Memasang Keramik | c | 3 |
| h | Mengecat | b, e | 2 |
| i | Memasang Aksesories | d | 1 |
| j | Memasang Pintu dan Jendela | f, i | 1 |
| k | Finishing | g, h, j | 4 |From the table above;
- a). Draw the network (Point 20%), and determine the critical path using
- b). algorithm method ES EF LS LF (Point 20%)
- c). Matrix method (Point 20%).
Completion
The solution to the 1st case study is HERE .
a. Network Image

b. ES EF LS LF Algorithm Method

Conclusion:
So, to be able to build the ASM Bakery office, 2 alternative critical paths are obtained, namely a, d, i, j, k, or c, f, i, j, k.
in order
1 → 4 → 7 → 8 → 9 → 10 or 3 → 5 → 8 → 9 → 10, with a completion time of 12 weeks.
c. Matrix Method

Conclusion:
So, to be able to build the ASM Bakery office, the critical path obtained is 1 → 4 → 7 → 8 → 9 → 10
Network Analysis Using Matrix Method
Network Analysis, in this case is a work network, usually used for infrastructure development projects such as flyovers, buildings, roads, etc. Such as the best algorithm to start work, so that the steps taken are more optimal.

Network Analysis Matrix Method
Exercise 1
ASM Company will build an office with a schedule of activities as per the following table.
| Kegiatan | Keterangan | Kegiatan Yang Mengikuti | Waktu (minggu) |
|----------|--------------------------|-------------------------|----------------|
| a | Merancang | b | 5 |
| b | Pesan Bahan | c, d | 8 |
| c | Meratakan Tanah | f | 2 |
| d | Membuat Pondasi | e | 3 |
| e | Membuat Tembok | h | 4 |
| f | Membuat Atap | g | 3 |
| g | Membuat Lantai | i | 5 |
| h | Memasang Pintu & Jendela | i | 3 |
| i | Finishing | - | 5 |From the table above, please create a network diagram, then determine the shortest time and critical path to be able to immediately execute the planning above. Use the matrix method.
Completion
Network Image For Network Analysis
Matrix Table

Clue:
- EF = start from the top, add up (+), and choose the one with the largest sum.
- LF = start from the bottom, subtract (-), and choose the one with the smallest subtraction.
Critical Path Requirements:
- ES = LS , or
- EF = LF , or
- Slack = 0.
Conclusion
So that the critical path can be obtained with yellow cells, namely,
1 → 2 → 3 → 4 → 6 → 8 → 9 with a working period of 28 weeks
or
1 → 2 → 3 → 5 → 7 → 8 → 9 with a completion time of 28 weeks.
Exercise 2
GATEWAN Company will build an office with the following table activity schedule.
| Kegiatan | Keterangan | Kegiatan Yang Mendahului | Waktu (minggu) |
|----------|-----------------------------------|--------------------------|----------------|
| a | Merancang | - | 2 |
| b | Membuat pondasi | a | 3 |
| c | Pengadaan Bahan | a | 18 |
| d | Membuat tembok | b | 8 |
| e | Memasang rangka pintu dan jendela | d | 6 |
| f | Membuat atap | b | 5 |
| g | Memasang keramik | d | 7 |
| h | Memasang pintu dan jendela | f | 1 |
| i | Mengecat | e,h | 2 |
| j | Finishing | c,g,i | 2 |From the table above, please create a network diagram, then determine the shortest time and critical path to be able to immediately execute the planning above. Use the ES EF LS LF algorithm method.
Completion

Network Analysis Network Image Exercise 2
Matrix Table

Conclusion
Then we can obtain two alternative critical paths / fastest paths, namely;
1 → 2 → 3 → 4 → 6 → 7 → 8 with a completion time of 23 weeks.
